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Abstract— Many existing color image denoising methods
process color channels individually and fail to consider their
cross-channel correlations. To solve this problem, in this paper,
we employ the quaternion representation of the color image
and propose a novel Quaternion Non-local Total Variation
(QNLTV) model to remove Gaussian noise from color images.
We first introduce the coupled quaternion distance to measure
the color image patch similarity. Decomposing the color image
into brightness and chromaticity components in quaternion
domain, we then divide the QNLTV model into two quaternion
optimizaiton problems and solve them alternatively. Experiment
results show that QNLTV has the significantly better denoising
performance than competing methods in terms of visual and
quantitative evaluations.

I. INTRODUCTION

The goal of image denoising is to obtain the denoised
image u from the noisy image f = u0 + n, where u0 is the
corresponding clean image and n is noise such as Gaussian
noise with variance σ2. Because image denoising is an
important preprocessing step in image processing, numerous
denoising methods have been proposed over the past decades
[1]. One of the most well-known denoising techniques to
remove Gaussian noise is variation denoising.

As a traditional variation denoising method, the total vari-
ation (TV) [2] algorithm was proposed for image denoising
in 1992. This algorithm seeks for the optimal solution of
a constrained minimization functional comprised of a TV-
based regularization term and a fidelity term. Goldstein and
Osher proposed a split Bregman method [3] for solving com-
mon l1-regularized problems efficiently. Utilizing this split
Bregman framework to TV denoising, they then proposed
the split Bregman anisotropic TV (SB-ATV) and the split
Bregman isotropic TV (SB-ITV) [3]. In order to preserve
more structure information and small scale details, Gilboa
et al. [4] replaced the scalar fidelity term in the original
TV model with an adaptive one. [5] proposed an efficient
and flexible method to solve the generalized vector-valued
TV problems, named the vector-valued iteratively reweighted
norm (VIRN) algorithm. However, due to the local TV
regularization, these TV-based methods frequently produce
staircase effects.

After the non-local means (NLM) [6], [7] was proposed
by Buades et al. in 2005, many researchers utilized the
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patch-based non-local idea and proposed many improved
TV-based algorithms, such as the non-local TV (NLTV)
[8] and the nonlocal version of the generalized relative TV
(NLGRTV) [9]. Different from the TV-based methods that
use local structure information to develop the optimization
models, the non-local versions of TV-based methods take
advantages of the relevant image patches to denoise the
center noisy patch. Unfortunately, most of the local and
non-local TV-based denoising methods deal with each color
channel independently and ignore the relationship among
color channels. Thus, this leads to unpleasant denoising
results.

The purpose of this paper is to propose a new color image
denoising method, named the Quaternion Non-local Total
Variation (QNLTV) model. QNLTV can process three color
channels as a whole by representing a color image pixel
as a quaternion. Separating the quaternion representation of
color image into brightness and chromaticity componnets, we
first introduce the coupled quaternion distance to measure
similarity between the color image patches in quaternion
domain. We decompose the QNLTV model into two opti-
mization problems. The quaternion split Bregman method
is proposed to alternatively optimize these two quaternion
optimization models. Experiment results are conducted to
demonstrate that QNLTV can effectively remove noise and
preserve color image details, and obtain higher SNR and
SSIM values than other competing denoising methods.

II. BACKGROUND

A. Total Variation Model

The TV model proposed by Rudin et al. [2] can be
expressed as

u = arg min
u

λJTV (u) +
1

2
‖f− u‖22, (1)

where JTV (u) is the regularization term and 1
2‖f − u‖22 is

the fidelity term. λ is the penalty factor.
There are two popular choices of JTV (u) for TV models.

One is the l2-based isotropic TV defined as [2]

JTV (u) = ‖∇u‖2 =
√

u2
x + u2

y, (2)

and the other is l1-based anisotropic TV defined by [10]

JTV (u) = ‖∇u‖1 = |ux|+ |uy| (3)
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where ∇ = ( ∂
∂x ,

∂
∂y ) denotes the gradient operator and

∇u = (ux,uy). ux, uy denote the gradients of u in the
x and y directions, respectively. JTV (u) is described as the
total variation of u.

B. Non-local Total Variation Model

Suppose u is of size M × N , let Ω = {0, 1, . . . ,M −
1}×{0, 1, . . . , N − 1}. Si is a search window with radius s
and center pixel i. Then, we can define the non-local partial
derivative of u at i as [11]

∇ωu(i, j) =
(
u(i)− u(j)

)√
ωij , j ∈ Si (4)

where

ωij =
1

C(i)
exp

(
−
||u(i+ ·)− u(j + ·)||2a

σr

)
, j ∈ Si (5)

and

C(i) =
∑
j∈Si

exp

(
−
||u(i+ ·)− u(j + ·)||2a

σr

)
(6)

where a is the Gaussian decay factor. σr is smoothing
parameter. u(i + ·), u(j + ·) are denoised image patches
centered at i and j, respectively.

By replacing the total variation JTV (u) with a non-local
total variation JNLTV (u), the NLTV model is defined by
[12]

u = arg min
u

λJNLTV (u) +
1

2
‖f− u‖22, (7)

where

JNLTV (u) = ‖∇ωu‖2

=
∑
i∈Ω

√∑
j∈Si

(
u(i)− u(j)

)2
ωij .

(8)

C. Quaternion Representation of the Color Image

Given a quaternion q̇ = a+ bi̇+ cj̇ + dk̇, it is comprised
of one real part and three imaginary parts [13]. a, b, c and d
are real numbers, i̇, j̇ and k̇ are complex operators obeying
the rules below

i̇2 = j̇2 = k̇2 = i̇j̇k̇ = −1,

i̇j̇ = k̇, j̇k̇ = i̇, k̇i̇ = j̇,

j̇i̇ = −k̇, k̇j̇ = −i̇, i̇k̇ = −j̇.
(9)

In addition, we list several important properties of quaternion
as followings:

• Conjugate of q̇:

¯̇q = a− bi̇− cj̇ − dk̇. (10)

• Modulus of q̇:

|q̇| =
√
q̇ ¯̇q =

√
¯̇qq̇ =

√
a2 + b2 + c2 + d2. (11)

• Dot product of q̇ and ṗ = e+ f i̇+ gj̇ + hk̇:

q̇ · ṗ = ae+ bf + cg + dh. (12)

• Cross product of q̇ and ṗ:

q̇ × ṗ = (ch− dg)i̇+ (df − bh)j̇ + (bg − cf)k̇. (13)

Since a color image in RGB space has three different
color channels, i.e. the red, green and blue channels, we can
represent a color pixel as a pure quaternion q̇ = ri̇+gj̇+bk̇,
where r, g, b denote the intensity values in the red, green and
blue channels, respectively.

Suppose µ̇ is a unit pure quaternion, any unit quaternion Ṫ
related to µ̇ can be expressed as Ṫ = |Ṫ |eµ̇θ = cos θ+µ̇ sin θ.
Then the quaternion unit transforms of a color pixel q̇ can
be defined as [14]

Ṫ q̇ ¯̇T = [cos θ + µ̇ sin θ](ri̇+ gj̇ + bk̇)[cos θ − µ̇ sin θ]

= q̇RGB + q̇B + q̇∆,
(14)

and
¯̇T q̇Ṫ = q̇RGB + q̇L − q̇∆, (15)

where 
q̇RGB =q̇ · cos 2θ,

q̇B =2µ̇ · (µ̇ · q̇) · sin2 θ,

q̇∆ =(µ̇× q̇) sin 2θ.

(16)

q̇B and q̇∆ are brightness and chromaticity components [15]
of pixel q̇ in quaternion domain, respectively.

III. PROPOSED METHOD

After reviewing two traditional variational models and the
quaternion representation of color image, we introduce the
coupled quaternion distance to measure the color image patch
similarity in the quaternion domain, and then propose a new
color image denoising method in quaternion domain, named
the Quaternion Non-local Total Variation (QNLTV).

A. Coupled Quaternion Distance

By applying Eqs. (14)-(16) and setting θ = π/4 and
µ̇ = 1√

3
(i̇ + j̇ + k̇), we can compute the brightness and

chromaticity components of u̇ as

u̇B =
1

2
(Ṫ u̇ ¯̇T + ¯̇T u̇Ṫ ), u̇∆ =

1

2
(Ṫ u̇ ¯̇T − ¯̇T u̇Ṫ ). (17)

Then the coupled quaternion distance between two color
image patches u̇(i+·) and u̇(j+·) is defined as

D
(
u̇(i+·), u̇(j+·), β

)
=‖u̇B(i+·)−u̇B(j+·)‖β ·‖u̇∆(i+·)−u̇∆(j+·)‖1−β

(18)

where β ∈ [0, 1] is a trade-off parameter.

B. QNLTV

In this subsection, we propose the Quaternion Non-local
Total Variation (QNLTV) for color image denoising in the
quaternion domain. Its quaternion optimization model is
defined by

u̇ = arg min
u̇

JQNLTV (u̇) +
1

2
‖ḟ− u̇‖2, (19)
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where

JQNLTV (u̇) = λ1‖∇ωu̇B‖+ λ2‖∇υu̇∆‖. (20)

where λ1 and λ2 are penalty parameters.

Since we use Eq. (17) to decompose the variable u̇ into
two components u̇B and u̇∆, the original quaternion opti-
mization model Eq. (19) can be separated into two quaternion
subproblems

u̇B = arg min
u̇B

λ1‖∇ωu̇B‖+
1

2
‖ḟ− ¯̇T (u̇B + u̇∆)Ṫ‖2, (21)

u̇∆ = arg min
u̇∆

λ2‖∇υu̇∆‖+
1

2
‖ḟ− ¯̇T (u̇B + u̇∆)Ṫ‖2. (22)

To solve the quaternion optimization problems in Eqs. (21)
and (22), we propose a quaternion split Bregman method.
Firstly, We replace∇ωu̇B with ḋ

B
and introduce an auxiliary

variable ḃ
B

, and thus the solution of Eq. (21) is equivalent
to solve the following quaternion optimization problem

{u̇B , ḋB} = arg min
u̇B ,ḋB

λ1‖ḋ
B‖+

1

2
‖f − ¯̇T (u̇B + u̇∆)Ṫ‖2

+
α1

2
‖ḋB −∇ωu̇B − ḃB‖2,

(23)

where

ḃB := ḃB +∇ωu̇B − ḋB . (24)

Next, we optimize u̇B and ḋ
B

by alternatively solving Eqs.
(25) and (26)

u̇B = arg min
u̇B

1

2
‖f − ¯̇T (u̇B + u̇∆)Ṫ‖2

+
α1

2
‖ḋB −∇ωu̇B − ḃB‖2,

(25)

ḋB = arg min
ḋB

λ1‖ḋ
B‖+

α1

2
‖ḋB −∇ωu̇B − ḃB‖2. (26)

To solve u̇B , we calculate weight ωij (j ∈ Si) by Eq. (27),
and then derive the Euler-Lagrange equation from Eq. (25)
to obtain Eq. (28):

ω
(t+1)
ij =

1

Cω(i)
exp

(
−
D
(
u̇(t)(i+·), u̇(t)(j+·), β1

)
σBr

)
, (27)

u̇B
(t+1)

=
u̇∆(t)

− Ṫ ḟ ¯̇T + α1∇ω(ḃB
(t)

− ḋB
(t)

)

1− α1∆ω
. (28)

where
∑
j∈Si

ωij = 1 and ∆ω is the graph Laplacian operator

[16]. To solve ḋ
B

, we apply the soft-shrinkage operator [3]
and obtain the equation below

ḋB
(t+1)

= shrink(∇ωu̇B
(t+1)

+ ḃB
(t)

,
λ1

α1
), (29)

where

ḃB
(t+1)

= ḃB
(t)

+∇ωu̇B
(t+1)

− ḋB
(t+1)

. (30)

Similarly, we can calculate υij (j ∈ Si), u̇∆, ḋ
∆

and ḃ
∆

by

Algorithm 1 QNLTV

Input: Noisy image f ; Parameters Ṫ , λ1, λ2, α1, α2, β,
σBr , σ∆

r ,a;
Output: Denoised image u̇;

1: Initialize u̇(0) = f , ḋ
B(0)

= ḃ
B(0)

= ḋ
∆(0)

= ḃ
∆(0)

= 0

and t = 0;
2: while not satisfy the termination do
3: Extract u̇B

(t)

and u̇∆(t)

from u̇(t) by Eq. (17);
4: Calculate ω(t+1)

ij (j ∈ Si) by Eq. (27);

5: Update u̇B
(t+1)

by Eq. (28).

6: Update ḋ
B(t+1)

by Eq. (29).

7: Update ḃ
B(t+1)

by Eq. (30).
8: Calculate υ(t+1)

ij (j ∈ Si) by Eq. (31);

9: Update u̇∆(t+1)

by Eq. (32).

10: Update ḋ
∆(t+1)

by Eq. (33).

11: Update ḃ
∆(t+1)

by Eq. (34).
12: Update u̇(t+1) = ¯̇T (u̇B

(t+1)

+ u̇∆(t+1)

)Ṫ

13: t = t+ 1;
14: end while
15: return u̇

the following updating processes

υ
(t+1)
ij =

1

C∆(i)
exp

(
−
D
(
u̇(t)(i+·), u̇(t)(j+·), β2

)
σ∆
r

)
, (31)

u̇∆(t+1)

=
u̇B

(t+1)

− Ṫ ḟ ¯̇T + α2∇υ(ḃ∆(t)

− ḋ∆(t)

)

1− α2∆υ
, (32)

ḋ∆(t+1)

= shrink(∇υu̇∆(t+1)

+ ḃ∆(t)

,
λ2

α2
), (33)

ḃ∆(t+1)

= ḃ∆(t)

+∇υu̇∆(t+1)

− ḋ∆(t+1)

. (34)

where
∑
j∈Si

υij = 1.

The processes of QNLTV are shown in Algorithm 1.

IV. EXPERIMENTS

We compare the denoising performance of QNLTV with
that of eight existing color image denoising methods. They
are NLM [6], TV [2], TV-AFT1 [4], VIRN [5], SB-ATV [3],
SB-ITV [3], NLTV [12] and NLGRTV [9]. All simulations
are implemented in Matlab with forty test color images of
size about 256×256. We utilize signal-to-noise ratio (SNR),
structural similarity index (SSIM) [17] and method noise to
evaluate the denoising performance of each method.

Table I presents the SNR and SSIM values of four test
images at noise levels σ = 10, 20, · · · , 100. For easy com-
parison, we list the SNR and SSIM of corresponding noisy
images for each test image. The best results are highlighted in
blue. Obviously, QNLTV performs the best in all situations.

1The TV model with adaptive fidelity term in [4]
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TABLE I
SNR AND SSIM RESULTS OF QNLTV AND OTHER METHODS AT NOISE LEVELS σ = 10, 20, · · · , 100.

SNR(dB) SSIM(%)
Image Method\σ 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

QNLTV 26.97 23.52 21.63 20.20 18.94 18.03 17.17 16.18 15.65 15.19 95.85 92.68 89.89 87.04 83.91 80.57 78.04 73.74 70.88 68.37
NLM [6] 26.25 22.38 19.81 18.04 16.74 15.71 14.94 14.33 13.91 13.54 95.37 91.15 86.80 82.85 79.22 76.10 73.42 70.92 68.65 66.65
NLTV [8] 26.11 22.70 20.52 18.87 17.55 16.61 15.82 15.14 14.68 14.21 95.18 91.47 87.32 82.72 77.96 73.61 69.46 65.85 62.92 59.82

NLGRTV [9] 24.82 20.52 17.62 16.23 15.45 15.00 14.72 14.40 14.08 13.81 94.37 88.25 82.84 77.77 73.95 70.66 68.44 65.43 64.06 61.84
TV [2] 23.68 19.76 18.06 16.90 16.13 15.55 14.98 14.63 14.29 14.01 92.78 86.68 82.10 78.44 74.65 72.30 70.41 68.44 66.35 64.53

lighthouse TV-AFT 25.10 21.35 19.23 17.83 16.80 16.17 15.59 15.10 14.73 14.36 94.96 90.68 86.25 82.09 78.53 75.89 73.53 71.46 68.74 67.40
VIRN 24.11 21.14 18.88 17.98 16.79 16.41 15.73 15.30 14.84 14.18 93.86 89.08 83.99 80.01 76.87 73.29 70.16 67.07 63.44 57.89

SB-ATV [3] 25.23 21.07 18.42 17.47 16.32 15.80 15.35 14.90 14.58 14.30 94.63 89.33 84.41 80.49 77.21 74.51 72.12 69.97 68.14 66.80
SB-ITV [3] 25.23 21.06 18.67 17.17 16.31 15.75 15.26 14.77 14.50 14.24 94.26 88.28 84.18 80.20 76.82 74.13 71.94 70.11 68.16 66.67

noisy 22.69 16.68 13.19 10.68 8.74 7.17 5.83 4.67 3.66 2.72 84.83 66.94 53.70 43.62 35.81 29.82 24.98 21.17 18.15 15.59
QNLTV 27.30 24.36 22.55 21.19 20.16 19.19 18.44 17.79 17.28 16.70 99.08 98.32 97.54 96.69 95.84 94.93 94.01 93.07 92.21 91.39
NLM [6] 25.91 22.19 19.59 17.90 16.58 15.57 14.69 14.02 13.49 13.04 98.85 97.47 95.70 93.85 91.93 90.18 88.45 86.89 85.62 84.57
NLTV [8] 26.66 23.43 21.45 19.92 18.77 17.78 17.02 16.40 15.87 15.33 98.96 97.94 96.80 95.52 94.21 92.89 91.58 90.39 89.20 88.18

NLGRTV [9] 26.17 22.36 20.36 19.27 18.47 17.77 17.21 16.76 16.38 15.85 98.85 97.36 95.94 94.89 93.95 93.05 92.08 91.25 90.55 89.60
TV [2] 25.96 22.81 21.11 19.89 18.91 18.07 17.35 16.84 16.37 15.94 98.78 97.60 96.52 95.50 94.47 93.41 92.35 91.51 90.53 89.85

peppers TV-AFT 26.66 23.45 21.54 20.18 19.22 18.41 17.59 17.14 16.72 16.08 98.97 97.94 96.86 95.77 94.85 93.90 92.71 92.04 91.26 90.28
VIRN 26.31 23.26 21.28 20.04 19.22 18.36 17.63 17.01 16.50 15.37 98.89 97.81 96.62 95.53 94.73 93.66 92.60 91.50 90.43 88.08

SB-ATV [3] 26.56 23.11 21.10 19.92 18.96 18.17 17.52 17.06 16.64 16.14 98.93 97.73 96.48 95.45 94.45 93.50 92.50 91.76 91.00 90.24
SB-ITV [3] 26.57 23.02 21.30 20.02 19.09 18.29 17.62 17.12 16.72 16.23 98.93 97.67 96.61 95.55 94.61 93.64 92.64 91.87 91.12 90.41

noisy 22.20 16.19 12.66 10.17 8.24 6.64 5.30 4.14 3.11 2.19 97.10 89.76 80.31 70.61 61.63 53.51 46.51 40.45 35.25 31.04
QNLTV 29.60 27.21 25.47 24.22 22.98 22.07 21.23 20.22 19.39 18.85 99.17 98.62 98.08 97.35 96.50 95.71 94.86 93.57 92.45 92.07
NLM [6] 28.88 25.71 23.76 21.87 20.04 18.74 17.77 16.85 16.21 15.68 99.08 98.05 97.15 95.72 93.86 92.40 90.90 89.56 88.09 87.33
NLTV [8] 29.42 26.57 24.57 22.82 21.43 20.31 19.39 18.58 17.87 17.36 99.14 98.36 97.50 96.24 94.97 93.71 92.38 91.06 89.68 89.01

NLGRTV [9] 28.33 24.67 23.26 21.99 20.87 20.09 19.37 18.62 18.24 17.75 98.82 97.42 96.83 95.76 94.63 93.72 92.82 91.59 90.95 90.50
TV [2] 27.72 25.48 23.95 22.83 21.45 20.68 20.09 19.24 18.70 18.22 98.61 97.74 97.17 96.39 95.16 94.52 93.88 92.80 91.74 91.19

splash TV-AFT 29.18 26.54 24.77 23.30 22.12 21.25 20.53 19.74 19.17 18.78 99.08 98.34 97.72 96.75 95.91 95.12 94.38 93.37 92.40 92.00
VIRN 28.16 25.88 23.70 22.19 21.51 20.37 19.55 18.60 17.84 16.50 98.74 98.00 96.95 95.74 95.21 93.84 92.89 91.46 90.11 87.86

SB-ATV [3] 29.19 26.11 24.49 22.92 21.89 20.96 20.20 19.52 18.96 18.56 99.02 98.09 97.55 96.43 95.72 94.76 93.95 93.07 92.04 91.72
SB-ITV [3] 28.60 25.24 24.03 22.89 21.72 20.80 20.12 19.50 18.92 18.54 98.86 97.62 97.19 96.42 95.51 94.51 93.80 93.04 91.97 91.68

noisy 22.35 16.34 12.83 10.32 8.38 6.80 5.47 4.28 3.24 2.36 95.63 87.51 78.86 70.46 62.64 55.59 49.47 43.84 38.95 34.99
QNLTV 26.84 23.06 20.94 19.33 18.09 17.07 16.27 15.77 15.20 14.78 97.87 95.32 92.37 88.77 84.91 81.14 77.04 74.66 71.49 69.10
NLM [6] 25.13 20.56 17.84 16.16 14.94 14.22 13.72 13.23 12.86 12.64 97.04 91.94 86.38 80.45 75.62 72.65 69.81 67.50 65.58 64.49
NLTV [8] 25.47 21.40 19.04 17.58 16.59 15.77 15.16 14.62 14.05 13.74 97.08 93.10 87.85 82.81 78.37 74.45 70.51 67.71 64.14 62.29

NLGRTV [9] 23.55 19.52 17.09 16.24 15.73 15.33 15.03 14.68 14.32 14.07 94.98 88.19 80.08 76.13 73.54 71.48 69.08 66.72 65.19 63.98
TV [2] 24.26 20.67 18.59 17.15 16.25 15.48 14.92 14.55 14.20 13.94 95.46 91.23 86.27 81.24 77.06 73.03 69.87 67.90 65.98 65.05

windows TV-AFT 24.91 21.17 19.01 17.60 16.66 15.92 15.37 14.93 14.45 14.25 96.65 92.56 87.84 83.49 79.83 76.51 72.86 71.17 68.15 66.96
VIRN 24.43 21.13 19.01 17.93 16.90 16.25 15.68 15.17 14.58 13.75 96.03 91.67 86.76 82.73 79.18 75.66 72.33 69.70 66.13 60.88

SB-ATV [3] 24.89 20.92 18.45 17.42 16.32 15.70 15.28 14.90 14.48 14.29 96.48 91.81 86.03 82.10 77.48 74.55 71.76 69.88 67.70 66.85
SB-ITV [3] 24.78 20.86 18.73 17.28 16.41 15.75 15.30 14.88 14.51 14.32 96.05 91.01 86.39 81.44 77.59 74.49 71.74 69.92 67.89 67.00

noisy 20.78 14.80 11.26 8.74 6.82 5.23 3.88 2.73 1.68 0.79 87.16 67.64 52.02 40.63 32.22 26.13 21.28 17.68 14.85 12.73

(a) (b)

Fig. 1. Average gains of (a) SNR and (b) SSIM over corresponding noisy images.

Fig. 1 shows the average gains of SNR and SSIM over the
corresponding noisy images as noise level σ ranges from 10
to 100. In terms of SNR (Fig. 1(a)), QNLTV can improve
the average SNR value by 5.0 dB at σ = 10 and about
14.8 dB at σ = 100. As can be seen, QNLTV is about
1.0 dB higher than TV-AFT and 1.5 dB higher than NLTV

when σ ranges from 20 to 80. Considering the SSIM index
(Fig. 1(b)), the average ∆SSIM value of QNLTV increases
from 11% to 59%. Compared with TV, QNLTV achieves an
obvious improvement by about 5% as noise level σ ≥ 20.
When noise level 20 < σ < 90, QNLTV surpasses TV-AFT
by about 3%.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Denoised results of the house image with noise σ = 20: (a) clean
image; (b) noisy image; (c) TV; (d) SB-ATV; (e) SB-ITV; (f) TV-AFT; (g)
VIRN; (h) NLTV; (i) NLGRTV; (j) QNLTV.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. Method noises of the house image with noise σ = 20: (a) clean
image; (b) noise; (c) TV; (d) SB-ATV; (e) SB-ITV; (f) TV-AFT; (g) VIRN;
(h) NLTV; (i) NLGRTV; (j) QNLTV.

Fig. 2 presents the denoised results of the house image at
noise level σ = 20. In the denoised results of TV and SB-
ITV, there are some noise residuals. NLGRTV over-smooths
the image and leaves many noticeable spots. SB-ATV, TV-
AFT, VIRN and NLTV perform well in noise removal but
lose fine structure information. According to the zoom-in
parts, we observe that QNLTV can greatly suppress noise and
preserve the textures of the house. However, other competing
methods fail to keep the details. The corresponding method
noise results of the house image are shown in Fig. 3. For
easy comparing and analyzing, we show the related clean
and noise images in Figs. 3(a) and 3(b), respectively. As
can be seen, we can recognize more or less the outline
of the house in the method noise results of the competing
denoising methods. However, there is almost no loss of
structure information after denoising by QNLTV.

Another case of denoising under heavy noise (σ = 70) is
shown in Figs. 4 and 5. As can be seen from the zoom-
in parts, QNLTV keeps more distinct and clear textures
of the parrot than other methods. TV, SB-ATV, SB-ITV
and NLGRTV casue blur in the textural areas. VIRN and
NLTV preserve many details, but introduce serious artifacts
in the smooth areas. Although TV-AFT shows relatively
strong capability of preserving details, there is obvious color
blending effect occurred in the regions near the edges. Fig.
5 presents the related method noise results of the parrots

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Denoised results of the parrots image with noise σ = 70: (a)
clean image; (b) noisy image; (c) TV; (d) SB-ATV; (e) SB-ITV; (f) TV-AFT;
(g) VIRN; (h) NLTV; (i) NLGRTV; (j) QNLTV.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Method noises of the parrots image with noise σ = 70: (a) clean
image; (b) noise; (c) TV; (d) SB-ATV; (e) SB-ITV; (f) TV-AFT; (g) VIRN;
(h) NLTV; (i) NLGRTV; (j) QNLTV.

image. We can still identify the textures around the eyes of
the parrots in Figs. 5(c)-(i). Compared with the competing
methods, the method noise result of QNLTV contains much
less image information.

V. CONCLUSION

In this paper, we utilized the quaternion representation
of color image to propose the Quaternion Non-local Total
Variation (QNLTV) model for color image denoising in the
quaternion domain. Applying the unit quaternion transform,
we first splitted the original color image into a brightness
component and a chromaticity component in quaternion
domain, and then introduced the coupled quaternion dis-
tance to measure the similarity between two color image
patches in quaternion domain. Based on the decomposition
of the quaternion representation of the color image, the
original QNLTV model was separated into two quaternion
optimization models to alternatively optimize u̇B and u̇∆.
Unlike many TV-based denoising methods using only color
intensity for denoising, QNLTV can take advantages of both
brightness and chromaticity information to denoise a color
image in the quaternion domain. Simulation results showed
that QNLTV achieves much better denoising performance
than other competing variational methods in terms of both
quantitative and visual comparisons.
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